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PROCESSOR DISPLACEMENT: AN AREA-TIME TRADE OFF

METHOD FOR VLSI DESIGN

David M. De Ruyck*
Lawrence Snyder

John D. Unruh*

Department of Computer Sciences, Purdue University,

West Latayette, Indiana 47907

ABSTRACT

Direct VLSI implementation of pipelined (systolic) pro-
cessor arrays can lead to an "over parallelized" design caus-
ing the chip to have unused or underutilized area. Processor
displacement design is a methodology that provides a spec-
trum of designs with differing time-area trade offs. The
methodology is motivated, presented in detail, and illus-
trated by several examples. Direct experience for the Tran-
sitive Closure and Dynamic Programming systolic arrays is
presented.
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INTRODUCTION

Area-time trade offs for computing functions in VLSI technologies
have been the subject of much study in recent years [1,2,3,4]. Although
important theoretically, these results tend Lo be based on asymptotic
analysis and employ rather coarse resource mecasures. To date, their

unpact on VLSI design and layout has been minimal.

We report on a methodology called processor displacement design
which provides area-time trade offs for pipelined arrays of processors

(systolic arrays [7]) that are useful for practical VLSI design and layout

problems.

Processor displacement gives the VLSI designer a range of choices

that can be balanced to conform to constraints such as “pin"

The work described herein is part of the Blue CHiP Project and is support-
ed in parl by the Office of Naval Research Contracts N00014-80-K-0818
and N0Q014-81-K-0360. The latter is Special Research Opportunities Task
SRO-100.
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60566.
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limitations and to increase the size of the problem solved with a

given chip area.

The widespread interest in systolic algorithms (see the references [5,8])

provides many opportunities to apply the methodology.

There are several benefits to processor displacement design. It pro-
vides a means of rapidly responding to the uneven improvements in pro-
cess Lechnology, e.g., when feature sizes reduce without a corresponding
improvement in packaging technology. It gives a rational basis for decid-
ing between serial or parallel data transfer on and off the chip. The
methodology can even be transferred to solving the problem of ma@ing

large problems onto fixed size multiprocessor archi}ectures.

e

The remainder of the paper is organized as follows. The next section
gives an example of the use of the methodology as well as its benefits and
liabilities. Next comes a thecrough presentation of the methodology. The

final section gives a summary and a discussion of some remaining issues.

MOTIVATION AND PROBLEM CONTEXT

In order to illustrate processor displacement, consider an idealized
design situation. A systolic array processing element cell, visualized as

containing processing circuitry and state memory, has been designed.

—| circuit -

— state -~

|
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Four processing elements of a linear sysiolic array have been imple-

mented as shown in Figure 1. (Kung and Leiserson's lower triangular

banded-system solver is of this variety [8, pp. 285-288]. The state values

are z, y and a, and the circuitry performs y « y + az.) We suppose that

the four elements fully utilize the available chip area at A = 2zum (for

some real value z > 0}, and that the timing is such that all processors arc
active on each step once the pipeline has been filled. Moreover, we
assume the eight ports of the array are connecled to the eight pins of our
(over simplified) package. (We can ignore power, ground and clocking

wires in this discussion.)

Figure 1.

Now suppose the circuit is to be fabricated with a A = zum process.
This factor of two densily improvemenl cnables the systolic array to be
rcalized with only one-fourth the area ol the previous implementation,
(Figure 2). It is possible, thercfore, to incrcase the implementation to
sixtcen processing elements (Figure 3). Notice Lhat this can be done by a

global reorganization of the cells withoul any cell redesign.

The sixteen element systolic array has twenty ports, but for the sake

of this discussion, we still assume that only eight pins are available. Il is
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Figure 2.
possible to multiplex the pins, but doing so has a liability: Processing ele-
ments must remain idle awaiting data. Nol only does this mean that we
never have all sixleen copies of the processing circuitry active at once
and thus waste silicon arca, we musi break open our completed cell

design Lo add idling logic.
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Figure 3.
Specification of sixteen processing clements without a corresponding
increase in pin availability causcs us to over parallelize the design. We
simply have more processing circuitry than can be uLiligcd. Although

this simplified example can be fixed by adopling a larger package, it is
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illustrative of a general fact that cannot be ignored: There must be a bal-
ance between the parallel cornputation capability of the processing cir-
cuilry and the data transfer capabilily provided by the pins. It is this

balance that processor displacement design is intended to contirol.

Continuing with the example, notice that in both of the A=zum
implementations, silicon area is wasted; either it is unused (Figure 2) or
underutilized because of multiplexing (Figure 3). Wc¢ can bring this
wasted area into productive use by incrcasing the size of the problem
solved on a chip. The idea is to reduce the amount of processing circui-
try until it matches the data transfer capacity of the pins. (In this case,
only four copies of the circuitry are required (Figure 4), although the
situation is more complicated in general.) The remainder of the effective
chip area is dedicated to state storage for processing clements that will
be implemented by essentially multiprogramining the circuitry. A multi-
plexor is provided for this purposc. Lach cluster of slatc storage cells
and processing circuitry is called a mulliPE. By using this processor dis-
placement approach, we have increased the size of Lthe implemented sys-

tolic array Lo 28.
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This factor of seven improvement in effective density from a factor of
two improvement in wire width was achieved without an increase in avail-
able pins. We paid for the improvement with a loss in time, but assessing
the exact amount is difficult. The layout in Figure 2 is {aster than that of
Figure t by the speed improvements due to scaling, provided the data
can be delivered fast enough. This gain is offset in the layout of Figure 3
since it is slower by a factor of four compared with FFigured 2 assuming
l we do not multiplex the four "end" ports. Compared with Figure 3, ihe

layout of Figure 4 looses a faclor somewhat less than two under the same

assumptions on multiplexing.

i THE METHODOLOGY

The m:athodology to be described is not, as yet, a fully mechanical
procedure suitable for computer implementation as a subroutine in a
CAD system. It requires the designer to make judgements and estimates
based on his experience. Nevertheless, the process is quite procédural
and we will organize our presenlation according to the six steps of the

methodology.

in order to aid the reader in understanding the detailed discussion of

the individual steps, we give the methodology in its entirety:

1. Develop an abstract sysiolic array processor (ASAP) to solve a
problem of arbitrary size. i

2. Design the processing element cell.

J. Figure the eflective chip area and thc pin count.

4. Determine if processor displacement is needed.

5. Compute the amount of processor displacement.

6. Layout the displaced processors and establish their timing proto-

cols.

We now describe each step in detail.

A LAy = i ae ot i —
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1. Develop an abstract systolic array processor (ASAP) to solve a
problem of arbitrary size. Systolic arrays arc regular, locally connected
arrays of one (or a small number of) processing element(s) that operate
in a synchronous, pipelined manner and have external connections only
at the perimeter. (See references [9,10] for characterizations by the
inventors.) Three kinds of interconnection siructure are typical: linearly
connected, orthogonally connected, and hexagonally connected. Other
connections have appeared, such as the toroidally connected Transitive
Closure Systolic Array [11], and these are suitable for our mythology pro-
vided that the connections are sufficiently 'local” that clustering
preserves the interconnection structure.

In general, the "size" of an ASAP will be proportional to its perimeter
and describes some property of the size of a give problem. For example,
in the Kung and Leiserson Banded Matrix Systolic Arrays [8], it is the
width of the band, not the size of the matrix, that determines the size of
the array. Thus, the width is designated as the size, n, of the ASAP. In
the case of the Transitive Closure Systolic Array [11], the size, n, is the
number of vertices.

The ASAP will determine two functions which have the size as a

parameter:
m (n) = number of processing elements in an ASAP of size n,
z(n) = number of inputs of an ASAP of sizen.

The z{n) function describes the number of "values” that must be
transferred to an array of size n on cach logical step, once the pipeline is
full. Thesec inpuls are the candidatles for mulliplexing and so the function

must be formulated with some care. In particular, for uniformity it may
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be wise to omit certain inputs from this function as was done with the
four "end” wires in the exampi+ of the last section. The term ‘values"
here refers to logical values, not bits. (Sce Step 3 for further discussion.)

For example, the linear ASAP of the last seclion hasz(n)=n.

2. LDesign the Processing Element Cell. Thc objective is not to
design a single, monolithic cell, but rather to design two cells: a process-
ing circuilry cell, pc cell, and a state memory cell, sm cell. Together,
these Lwo cells should define a processing element for the ASAP. But
they should also define a family ol cells, each one composed of one
instance of the pe cell and multiple instances of the sm cells. These serve
as multiPEs when multiplexing control logic is added. These conditions
imply not only that the two cells have a compatible geometry, but that
they are compatible with additional copies of the sm cell. (See Step 6 for
a discussion of the effect of various clustering choices.) In order that
"high level” manipulation of these components be pcssible withoul any
internal modification, bus wires and selection lines should be incor-

porated into the sm cell.

Although many systolic arrays use only one kind of processing cle-
ment, it is possible that several types will be required [8]. If this is the
case, scveral pc cell Ltypes will obviously have to be designed. Several sm
cells may be required too, although these tend to be the same over the
entire array. When multiple element types are required, there will be
geometric constraints within the multiPE as well as belween multiPEs.
Moreover there may be limits on the kinds of clustering possible, (see
Step 8.) These considerations should obviously be assessed before design-
ing.

There are Lwo values that are determined by the cell design that will




be needed later:

a = area of one processing clement, i.c., arca of a pc cell and an sm

cell,

g = that fraction ci o used by the sm cel}, i.e., area of an sm cell/a.

Since the subsequent analysis only requires these two values and not the
designs themselves, it is sufficient to have good estimates in order to
proceed.

By proceeding on the basis of good estimates, information can be
learned about two important design decisions. First, it is possible that
given layoul dimensions and ceriain clustering strategies can lead to
multiPE geometries that do not pack well into the available chip area.
This could make a processor displaccment design unachievable. By
estimating the area, we can determine the degree of clustering and this
will allow us to infer preferred cell dimensions that will pack easily.
Secondly, it may not be obvious how much parallelism is appropriate for
data Llransmission. Since this decision will probably influence cell design,
we can work through the methodology with several assumptions on the
exlent of parallelism and compare the results. This approach is recom-

mended when speed is a significant consideration.

3. Pigure the effective chip area and the pin count. Not all of the
chip arca is available for use by the systolic array processing elements.
ln addilion to inpul/oulpul pads, we may nceed arca for mulliplexor logic,
bus wires for rouling signals belween the pads and Lhe array clements,
and possibly, buffers for timing (sce Step 6). The arca occupied by all of

these overhead components should be determined (or estimated). Define

the remaining area as

e
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A = effective chip area.

We assume that 4 1s s rectangle with dimensions that permit convenient
packing of pc and sm cells.

Of the pins available on the intended package, some will be dedicated
to power, ground and clocking signals. The remainder will be assigned to
the data transmission activity of the systolic array. If certain ports were
not included in the z(n) definition (Step 1), then they must be per-
manently assigned to pins and the available number reduced accordingly.
If there is a single output from the array, this should be included in the
permmanently assigned pins.

The remaining pins are available to be used by the multiPEs. If the
processing elements use parallel input (and, perhaps output), then divide
the available pins by the width of the parallelism. (This allows us to refer
to a "pin" without reference to serial or parallel data transfer.) Now, if
Lthe ASAP produces multiple outputs, then we assume there are z(n) of
them and that they use the same degrec of parallelism as the input. If
so, divide the number of available pins by two, since for cach pin assigned
to the input, one must be assigned to an output. (Any other ratio can be

handled analogously.) Define this result to be

P = number of available pins.
This is the number of data "values” ithat can be read in a single logical
slep (see Step 1).

4. Delermine if processor displacement is needed. The objective of

this step is to determine if there are sufliciently many pins to permit a

direct implementation of a portion of the systolic array. Clearly,

s
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processing elements could fit into the available chip area. By solving

m(n)=y
for n we can determine the size of the region of the ASAP that fits on one

chip. This region of the ASAP will require z(n) pins. Thus, if

z(n)<p,
direct implementation of the systolic array is possible with full parallel-
ism.
Care must be exercised in interpreting the resulls of the preceding
Lest. [f direcl implementation is possible there is still the problem of
packing the pe cell, sm cell pairs into the available arca. In the following

we assume that

z(n)>p
by a "substantial’ amount.

5. Compute the amount of processor displacement. Using the previ-

ously defined functions,
m(n) = number of processing eclements in an ASAP of sizc n,

z(n) = number of inputs of an ASAP ol size n, and conslants,

a = arca of a processing element,

g = fraction ol a required for state memory,
A = effeclive chip arca

P = number of available pins,
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we can derive an expression [or the arca occupied by a displaced proces-
sor design.

The key quantity in our analysis is the bundling funclion,
kin) = z_g_z_)_

which describes the degree of mulliplexing required of the p pins in order
to deliver Lhe z{n) input required by onc logical siep of an ASAP of size n.
Thus, in &{n) processing sleps the dala [or one logical step of a size n
ASAP can be read. Since the syslolic array is assumed to rcquire this
mmany inpuls on cach logical step, the parallelism of the ASAP should be
reduced by a factor of k(n). Thus, each mulliPE should simulale k{n)
logical processing elements, and hence Lthe name "bundling function.”
With k(n) bundling, the m(n) logical processing elements can be
simutated by m(n)/k(n) mulliPEs each conlaining k(n) — 1 additional

memory states. The total must thus satisfy

A= 7:((:%+ k(,:%:; L m (n)q|a.

Substitutling for &(n) and simplilying the resulting quoticents yiclas

- P z(n) ~p
A=|m(n) Z () + (1) m.(n)q]a.
Further simplification gives
4= apm (n.) L+q z(n) -1 (1)
z(n) P

Since all quantities are known as a result of Steps 1-3, we can solve for n

and dctermine the size ol the ASAP thal could be designed. Knowing n

allows us Lo compute the bundling factor, &, [rom k(n).

L.
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Example: Equation (1) can be used to derive the displaced processor
design given in the second section. For the linear systolic array,
m(n)=n and z(n) =n. We used p = 4 belore and if we use a =1 and

g = %, then 4 = 16 is appropriate. Thus

)

1

l4mn L

16 =

and n=28. Since k(n) =n/4. The bundling factor is 7.

Obviously, some judgement must be employed in applying equation
(1). lor example, since Lthe bundling faclor describes the extent of the
mulliplexing and the number of displaced processors in a mulliPE, the
design is greatly simplified if il is an integer. Thus, one might choose the
grealest n less than that determined by equation (1) such that k(n) is an

integer.

6. Layout the displaced processors and establish their timing proto-
cols. With a bundling factor of k¥ eslablished in Step 5, we layout the mul-
LiPlis such that cach contains a copy of the pc cell and k& copies of the sm
cell. The multiPEs are then laid out in the available area such that their
input/output ports are connected either to input/output pads or the
ports of adjacent processing elements. The layout problem, as has
alrcady been menlioned, is subject to packing difficullies when the
dimensions of the available area are not multiples of the dimensions of
the multiPEs. Wiring the ports of a linear systolic'array should be a
straightforward opcration. But wiring and timing two dimecnsional sys-

tolic arrays presenls some inleresling problcms.




e e et 6 s et L

- 14 -

Each multiPE will simulate a contiguous region of k logical process-
ing cleinenls of the ASAP. The gcoinelry of Lhis region significantly
eflects the multiplexing operation. Let the bundling factor £ = 4 and con-
sider two multiPEs ihat simulale regions of the ASAP with input on two
sides, each with different geometrics.* (Reler to Figure 5.) MultiPE B

simulates a 2 x 2 block B

Figure 5.

of logical processing elements while multiPE C simulates a columnar
region.

The key difference between multiPEs B and C is that when they
appear along the perimeter (ignore the corner case for the moment) of
the ASAP, they have different numbers of external ports; B has two while
C has four. Since each pin will deliver four values in a logical sicp, each
¢ multiPE processes exactly the amount of data provided by the pin. But
cach B mulliPE can only use two inputs during a logical cycle, so two B

multiPEs must be attached to one pin.

*Notice Lhal we are not referring to the geometry of the pe eell and sm ccell organ-
ization of the layout.
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The main consequence of several multiPEs sharing one pin is that the
order in which the constituent processing elements are simulated cannot
be the same. For example, suppose two B multiPEs appear along the per-
imeter and share a pin. Then on processing step one, they cannot both
simulate processing element <1,1> since that would require them both to
read from the pin simultaneously. We must either introduce a buffer or
change tlie order in which constlituent processing elements are simu-
lated, so that they are not both reading al once. Notice that linear mul-

tiPEs are not subject to this difficulty.

Handling the external input for the multiPE that ‘simulates the
corner processing element adds a bit more complexity because for either
geometry, it has more inputs than the others. In either case the multiPE
will be connected to two different pins. Again, changing the ordering of
the simulations (now it must be done along both sides) or buflering solves

the problem.

Perhaps the simplest solution is to use € multiPEs such that the
corner multiPE simulales in sequential order down the column and the
k-1 adjacent € multiPEs simulate in an order thal is a cyclic shift
(upward) of this sequence. (Obviously, analogous remarks apply for the

output.)

EXAMPLES

We have used the processor displacement methodology to analyze
two systolic array algorithms. The computed results are summarized in
Table I. The processing element layouts usc Mead and Conway [9] design
rules. The expression "p = z(n)" means Lhat pins are assumed to be

unlimited.
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TABLE I.
Transitive Dynamic
Closure Programmin
n? m(n) n?
2n z(n) 5n
params | 8mm x 6mm A 8mm x 6mm
11286A% a 285000\®
0.5 q 0.25
A | 2um lum 2um ium
n 28 56 | p=z(n) 5 11
m(n) 784 | 3136 25 121
n 28 66 | package 8 19
m(n) 784 | 4356 | size =64 64 361
multiPEs 784 | 1462 16 38
n 32 71 | package 9 20
m(n) | 1024 | 5041 | size =40 81 400
multiPEs 512 | 1261 11 24

For the Transitive Closure Systolic Array [11], n is the number of ver-
tices. Since the input does not overlap with the output, the same pins
are used for both operations. Notice that there is no benefit in processor
displacement for A = 2um and package size of 84 since only 56 pins are
needed in addition to the four overhead pins, i.e., in this technology it is

possible to have full parallelism.

The Dynamic Programming Systolic Array solves string distance
measurement using an n xn array with six bit data. Thus, for a 84 pin
package p = (84 — 4)/86 = 10 logical pins. Each cell requires three values

from the north and two from the west.

Notice that the values in Table I may be optimistic in the sense that
"divisibility constraints” have been ignorcd. To usc the pins optimally, n
should be chosen so that z(n)/k(rn) is an integer. If it is not, some
bandwidth will be wasted or the timing will be significantly complicated.

A turther constraint that one might require is for m(n)/ k, the number of
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multiPEs used, to be an interger. Fractional numbers could be achieved
by having multiPLEs simulalc fewer than & logical processing elements.
The Dynamic Progrumming array [or packages of 84 pins und A = 2um
is the only table entry to satisfy both constraints. We can often reduce
the problem size to enforce the divisibility constraints. For example, in
the Iransitive Closure, package of 40 pins, A = lum case, the problem size
must be reduced to n = 54 before the divisibility constraints are met.
This choice reduces the area utilization from better than 98% to about
61%. However, if the available area were about 1.5% larger (or
cquivalently, the cells werc proportionately smaller), a problem size of
n = 72 (with £ = 4) would be possible. This would requirc redesigning the
inpul/output pad area. In genecral the divisibility constrainis can be con-
trolied with several parameters and the optimal combination depends on

the designer’s judgement.

SUMMARY

We have presented a six slep methology that allows the amount of
parallelism in a systolic array to be matched to the data transfer
bandwidth provided by the pins. The technique appears Lo be applicable
to systolic arrays with a wide variety of characteristics. Il provides a
means of evalualing the benefits of sei‘ial vs parallel data transler and for

fully ulilizing the available silicon.
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